Journal

Synthesis and structure of 1-metallacyclopent-3-yne complexes of group 4 metals

Noriyuki Suzuki ${ }^{\text {a,** }}$, Takaaki Watanabe ${ }^{\text {c }}$, Hajime Yoshida ${ }^{\text {b }}$, Masakazu Iwasaki ${ }^{\text {b }}$, Masahiko Saburi ${ }^{\text {b }}$, Meguru Tezuka ${ }^{\text {b }}$, Takuji Hirose ${ }^{\text {c }}$, Daisuke Hashizume ${ }^{\text {a }}$, Teiji Chihara ${ }^{\text {a }}$
${ }^{\text {a }}$ RIKEN, Wako, Saitama 351-0198, Japan
${ }^{\mathrm{b}}$ Department of Applied Chemistry, Faculty of Engineering, Saitama Institute of Technology, Okabe, Saitama 369-0293, Japan
${ }^{\text {c }}$ Department of Applied Chemistry, Faculty of Engineering, Saitama University, Sakura-ku, Saitama City, Saitama 338-8570, Japan

Received 10 August 2005; received in revised form 18 November 2005; accepted 22 November 2005
Available online 28 December 2005

Abstract

Five-membered metallacyclic alkyne complexes of titanium and hafnium, 1,1-bis(cyclopentadienyl)-1-titanacyclopent-3-yne (2) and trans-1,1-bis(cyclopentadienyl)-2,5-trimethylsilyl-1-hafnacyclopent-3-yne (6), were synthesized and structurally characterized. The structural analysis of titanium complex $\mathbf{2}$ implied a larger contribution of an $\eta^{4}-\pi, \pi$-coordinated structure. The hafnium compound $\mathbf{6}$ has a similar structure to the corresponding zirconium analogue (1a), although slight differences in the bond lengths and angles were observed. A novel 1-zirconacyclopent-3-yne complex, 1,1-bis(methylcyclopentadienyl)-2,5-bis(trimethylsilyl)-1-zirconacyclopent-3-yne (5), was also prepared and the structure of the trans-isomer was determined.

© 2005 Elsevier B.V. All rights reserved.
Keywords: Titanium; Hafnium; Zirconium; Metallacyclopentyne; Butatriene

1. Introduction

It is known that small cyclic alkynes are generally very unstable and difficult to isolate [1-3]. In particular, cyclopentynes, five-membered cyclic alkynes, are highly reactive and short-lived species. Hydrocarbyl cyclopentyne and thiacyclopentyne [4] have been prepared, and the formation was spectroscopically detected [5-7] or confirmed by trapping them by subsequent chemical reactions, such as $2+2$ cycloaddition [8], metal complexation [9-11], and so on. However these compounds are so reactive that they have not been isolated in a pure form.

[^0]

We recently reported the synthesis and structure of metallacyclic compounds derived from zirconocene and 1,2,3-butatriene and noted that the complexes could be regarded as the first isolable five-membered cyclic alkynes, i.e., 1-zirconacyclopent-3-ynes (Eq. (1)) [12]. We also reported a simple and versatile preparative method for "non-substituted" 1-zirconacyclopent-3-ynes ($\mathbf{1 c} \mathbf{- d}: \mathrm{R}=$ H) and showed their reactivity [13-16].

Five-membered metallacyclocumulenes reported by Rosenthal and coworkers showed similar structure and reactivity to metallacyclopentynes [17-20]. They have prepared a variety of zirconacyclocumulenes as well as titanacyclocumulenes and extensively studied their reactivity, although a hafnium analogue has not been reported. They demonstrated that these zirconium and titanium complexes showed a few slight differences in their molecular structures [21].

It is important to compare the structure of zircona-, titana- and hafnacyclopentyne complexes to understand their properties. Thus, we aimed to synthesize metallacyclopentynes of other group 4 metals [22]. Recently, Rosenthal and coworkers have reported preparation of a 1 -titanacyclopent-3-yne compound $\mathbf{2}$, although the molecular structure of $\mathbf{2}$ was not determined (Eq. (2)) [23]. Herein, we wish to report the first examples of structurally characterized 1-metallacyclopent-3-yne complexes of titanium and hafnium. A part of this work has previously been communicated [24].

2. Results and discussion

2.1. Synthesis of 1-titanacyclopent-3-ynes

We first prepared 1,1-bis(cyclopentadienyl)-2,5-bis(tri-methylsilyl)-1-titanacyclopent-3-yne (4) from $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ and (Z)-1,4-bis(trimethylsilyl)-1,2,3-butatriene (3) [25,26] (Eq. (3)). Titanocene dichloride was treated with 2 equiv. of $n-\mathrm{BuMgCl}$, and then reacted with 3. The volatiles were removed in vacuo and the residue was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}$. NMR observation of the solution indicated the formation of 1-tianacyclopent-3-yne $\mathbf{4}$ as a mixture of cis- and transisomers in good yield. Two signals of the cyclopentadienyl (Cp) rings were observed at 4.86 and 5.03 ppm for the cisisomer and one singlet at 4.94 ppm for the trans-isomer. These signals appeared slightly upfield compared with the zirconium analogue 1a (5.00 and 5.36 ppm for cis, 5.18 ppm for trans). The signals for the methine protons, on the other hand, appeared at 2.49 and 2.28 ppm for the
cis- and trans-isomers, respectively, being observed downfield relative to 1a. ${ }^{13} \mathrm{C}$ NMR spectroscopy revealed that signals assignable to quaternary alkynyl carbons in the cis- and trans-isomers were observed at 107.96 and 108.80 ppm , respectively. These spectra were similar to those of the zirconium complex 1a, supporting the formation of 4. The isomerization from the cis-isomer to the trans-isomer reached equilibrium after 1 h at r.t. This is faster than observed for the zirconium analogue 1a, where it required overnight stirring at r.t. Although it is still unclear how the complexes isomerize from cis to trans, one possible explanation is that it takes place via β-hydrogen elimination from $\eta^{2}-\pi$-coordinated form [12]. Our preliminary observation were that $(Z)-\mathbf{3}$ isomerized to $(E)-3$ in the presence of catalytic amount of zirconocene species [12]. Another possibility is that it involves a dimeric intermediate as Negishi proposed for zirconium-catalyzed cis/trans isomerization of 1,2 -diarylethenes [27].

Our attempt to isolate $\mathbf{4}$ by recrystallization, however, has been unsuccessful so far. Judging from NMR spectroscopy, $\mathbf{4}$ decomposed to unidentified species during the operation. Next we prepared the 1-titanacyclopent-3-yne compound derived from 1,4-dichlorobut-2-yne. The procedure was similar to the preparation of the zirconium derivative $1 \mathbf{c}$ (Eq. (4)).

1-Titanacyclopent-3-yne $\mathbf{2}$ was formed in 60% yield by ${ }^{1} \mathrm{H}$ NMR. Recrystallization from hexane solution gave dark brown crystals of 2, albeit in low yield (9\%). Spectroscopic data were identical to the reported results [23]. The molecular structure of $\mathbf{2}$ was determined by an X-ray diffraction study (Fig. 1). This is the first example of a structurally characterized 1-titanacyclopent-3-yne. Its structure is similar in principle to that of the corresponding zirconium complex 1c $[13,14]$. The four carbons of butatriene and Ti metal are coplanar, and the butatriene moiety is bent

Fig. 1. Molecular structure of 2. Drawn with 50% probability.
to form a strained five-membered metallacycle. The bond lengths and angles are compared to those of the zirconium complexes in Table 1. The $\mathrm{Ti}-\mathrm{C} 1$ and $\mathrm{Ti}-\mathrm{C} 2$ distances are significantly shorter than the $\mathrm{Zr}-\mathrm{C} 1 / \mathrm{C} 4$ and $\mathrm{Zr}-\mathrm{C} 2 / \mathrm{C} 3$ distances of $\mathbf{1 c}$. Shorter $\mathrm{Ti}-\mathrm{C}$ bonds compared with the corresponding $\mathrm{Zr}-\mathrm{C}$ bonds are usually observed. For example, in $\mathrm{Cp}_{2} \mathrm{M}\left(\mathrm{CH}_{3}\right)_{2}$ complexes, the $\mathrm{M}-\mathrm{C}$ lengths are $2.17-$ $2.18(\mathrm{M}=\mathrm{Ti})$ and $2.27-2.28 \AA(\mathrm{M}=\mathrm{Zr})[28,29]$. It is noteworthy that the $\mathrm{C} 1-\mathrm{C} 2$ length is slightly shorter than those in Zr complexes, and $\mathrm{C} 2-\mathrm{C} 2^{*}$ is longer. Besides, the summation of the three bond angles (excluding the $\mathrm{C}-\mathrm{Ti}$ bond) at C 1 is 350°, which is larger than those in Zr and Hf complexes ($340-345^{\circ}$). These facts imply that the contribution of the $\eta^{4}-\pi, \pi$-coordination mode, which was proposed by Lin and coworkers based on calculation [30], in 2 is larger than in 1c (Fig. 2).

2.2. Synthesis of 1-zirconacyclopent-3-yne complex 5

In our first report on 1-zirconacyclopent-3-yne, we reported the molecular structure of 1a. To obtain more information about similar compounds, we prepared a novel 1-zirconacyclopent-3-yne compound. Bis(methylcyclopentadienyl)dichlorozirconium and (Z)-1,4-bis(trimethylsilyl)-

Fig. 2. Resonance structure, $\eta^{2}-\sigma, \sigma$ and $\eta^{4}-\pi, \pi$ bonding modes.

1,2,3-butatriene (3) were used as starting materials (Eq. (5)). The complex 5 was formed as a cis/trans mixture (50/50) in a THF solution. In the ${ }^{1} \mathrm{H}$ NMR spectra, the cis-isomer exhibited two signals for the methyl groups and four signals for the Cp protons. On the other hand, the trans-isomer showed only one methyl signal and four Cp protons, indicating the four protons on one Cp ring were unequivalent. This indicated that rotation of the Cp rings is restricted in trans-5, probably because of the steric repulsion between the methyl group on the Cp rings and the trimethylsilyl group. Recrystallization from ether solution gave colorless crystals of trans-5. The molecular structure of trans-5 is depicted in Fig. 3. The methyl groups on the Cp rings are located distant from the trimethylsilyl groups, which is consistent with the NMR data. The metallacycle plane was slightly tilted out of perpendicular to the Cp (centroid) $-\mathrm{Zr}-\mathrm{Cp}$ (centroid) plane (85.4(1) $)^{\circ}$) due to steric repulsion between the trimethylsilyl groups and the Cp rings. This was also observed in $\mathbf{1 a}\left(86.1(4)^{\circ}\right)$, whereas these two planes are nearly perpendicular in non-substituted metallacyclopentyne compounds such as $\mathbf{1 c}$ and $\mathbf{1 d}$. Other structural features are fundamentally the same as for 1a,

Table 1
Selected bond lengths and angles for 1-metallacyclopent-3-yne complexes

	2	1c	1d	1a	5	6
C1-C2	1.393(3)	1.406(4)	1.418(3)	1.415(7)	1.412(4)	1.403(7)
C2-C3	$1.248(4)^{\text {a }}$	1.237(5)	1.237(3)	$1.206(7)$	1.231(4)	1.229(7)
C3-C4		1.408(5)	1.417(3)	1.400 (6)	1.409(4)	1.407(7)
M-C1	2.353(2)	2.415 (3)	$2.414(2)$	2.500 (6)	$2.452(3)$	$2.429(5)$
M-C2	2.202(2)	2.314(3)	2.311(2)	$2.289(5)$	$2.295(3)$	2.276(5)
M-C3		2.320 (3)	$2.305(2)$	$2.289(6)$	2.294 (3)	$2.276(5)$
M-C4		2.428(3)	2.433(2)	2.504(4)	2.466(3)	2.431(5)
C1-C2-C3	151.7(1) ${ }^{\text {b }}$	151.5(3)	150.8(2)	155.9(7)	153.3(3)	153.0(5)
C2-C3-C4		151.3(3)	152.3(2)	156.2(6)	154.1(3)	153.1(5)
C1-M-C4	103.8(1) ${ }^{\text {c }}$	99.9(1)	100.6(1)	98.1(2)	99.7(1)	100.4(2)
M-C1-C2	66.4(1)	68.8(2)	67.7(1)	64.8(3)	66.7(2)	66.8(3)
M-C4-C3		68.6(2)	68.6(1)	64.8(3)	66.2(2)	66.7(3)
Metallacyclopentyne to $\mathrm{Cp}(\mathrm{c})-\mathrm{M}-\mathrm{Cp}^{*}(\mathrm{c})^{\text {d }}$	89.3(1)	89.6(4)	89.4(1)	86.1(4)	85.4(1).	86.0(2)
$\Sigma(\mathrm{Cl})^{\text {e }}$	349.6	340.8	344.9	344.2	340.1	339.4
$\Sigma(\mathrm{C} 4)^{\text {e }}$		340.1	346.5	342	345.4	339.6
Refs.	This work	14	13	12	This work	This work

[^1]

Fig. 3. The molecular structure of 5. Drawn with 50% probability. Hydrogen atoms are partly omitted for clarity.
although the C2-C3 length (1.231(4) \AA) is slightly longer than that of $\mathbf{1 a}(1.206(7) \AA)$.

2.3. Synthesis of 1-hafnacyclopent-3-yne complexes

(6)

The hafnocene derivative $\mathbf{6}$ could also be prepared similarly, using $\mathrm{Mg} / \mathrm{HgCl}_{2}$ as reducing agents (Eq. (6)). The NMR observation showed similar signals to the Zr complex 1a. The cis/trans ratio was $50 / 50$ after 1 h at r.t, and the isomerization from cis- $\mathbf{6}$ to trans- $\mathbf{6}$ was significantly slower than observed for the Zr complex. It required heating at $50^{\circ} \mathrm{C}$ overnight (cis/trans $=38 / 62$). Recrystallization from hexane solution gave trans-6 as colorless needle crystals that allowed us to achieve the X-ray diffraction analysis (Fig. 4). This is the first example of a 1-hafnacyclopent-3-yne compound. Judging from the space group and the similar cell parameters, it was almost isostructural to the zirconium derivative 1a, although the C2-C3 length of 1.229 (7) \AA is slightly longer. The hafnacyclopentyne plane is again tilted away from the perpendicular to the Cp (centroid) $-\mathrm{Hf}-\mathrm{Cp}$ (centroid) plane (86.(2) $)^{\circ}$), as observed in $\mathbf{1 a}$ and $\mathbf{5}$.

We tried to prepare the hafnium analogue of $\mathbf{1 c}$ and $\mathbf{2}$ starting with 1,4 -dichlorobut-2-yne (Eq. (7)). The reaction was conducted similarly to the zirconium complex $\mathbf{1 c}$. ${ }^{1} \mathrm{H}$ NMR spectroscopy showed two singlets at 5.15 and 2.54 ppm assignable to Cp and methylene protons respectively, suggesting the formation of 7 in ca. 30% yield by ${ }^{1} \mathrm{H}$ NMR. Our attempt to isolate 7, however, has been unsuccessful.

Fig. 4. The molecular structure of $\mathbf{6}$. Drawn with 50% probability. A part of hydrogen atoms are omitted for clarity.

2.4. The molecular structure of Ti, Zr and Hf complexes

Bond lengths and angles of the known metallacyclopentyne compounds are summarized in Table 1 to compare the titanium, zirconium and hafnium complexes. As discussed above, the followings are noteworthy; (i) the $\mathrm{Ti}-\mathrm{C}$ bonds in the metallacyclopentyne are significantly shorter than the corresponding $\mathrm{Zr}-\mathrm{C}$ and $\mathrm{Hf}-\mathrm{C}$ bonds; (ii) The $\mathrm{C} 1-\mathrm{C} 2$ bond length in the Ti complex (2) is slightly shorter than those in Zr and Hf complexes, whereas the $\mathrm{C} 2-\mathrm{C}^{*}$ distance in $\mathbf{2}$ is longer than those (C2-C3) in Zr and Hf ; (iii) the summation of the three bond angles (excluding the C-metal bond) at C 1 and C 4 were $340-345^{\circ}$ in the Zr and Hf complexes, and 350° for the Ti complex; (iv) the metallacyclopentyne plane is tilted away from perpendicular to the Cp (cen-troid)-metal- Cp (centroid) plane when it has large trimethylsilyl groups, whereas these two planes are vertical in non-substituted metallacyclopentynes. In addition, the lengths of C-C triple bonds are in the range 1.23-1.24 \AA for most cases, which is in good correspondence to the calculated results $[30,31]$. The facts (ii) and (iii) suggests the
larger contribution of $\eta^{4}-\pi, \pi$-coordination mode in the titanium complex.

The selected chemical shifts in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and coupling constants (${ }^{1} J_{\mathrm{CH}}$) are shown in Table 2. It was found that the protons at α-carbons appeared downfield in the order $\mathrm{Ti}>\mathrm{Zr}>\mathrm{Hf}$, while Cp signals were observed in the order $\mathrm{Ti}<\mathrm{Zr} \approx \mathrm{Hf}$. It is known that Cp protons in the titanocene(II) and zirconocene(II) complexes of a π-coordinated alkene or alkyne appear in the upper magnetic field compared to the dialkyltitanocenes(IV) and zirconocenes(IV) [32-34]. Carbons attached to Ti metals are commonly observed at lower field compared with the corresponding Zr and Hf compounds [3537]. It may be noted that the coupling constants $\left({ }^{1} J_{\mathrm{CH}}\right)$ at C 1 are larger in the Ti complexes than in the corresponding Zr and Hf complexes. These NMR data are consistent with the larger contribution of $\eta^{4}-\pi, \pi$-coordination in the titanium complexes suggested by structural analysis. The differences in reactivity of titana-, zircona- and hafnacyclopentyne complexes are now being investigated.

3. Experimental

3.1. General

All manipulations were carried out under an argon atmosphere. Anhydrous THF and hexane were purchased from Kanto Kagaku and degassed prior to use. Dichlorobis(cyclopentadienyl)titanium, dichlorobis(cyclopentadienyl)zirconium, dichlorobis(cyclopentadienyl)hafnium and n-butylmagnesium chloride (1.0 M THF solution) were

Table 2
Selected ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic data (ppm) for 1-metalalcyclo-pent-3-yne complexes ${ }^{\text {a }}$

${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$		Ti	Zr	Hf
${ }^{1} \mathrm{H}$		cis-4	cis-1a	cis-6
	CH	2.49	2.19	2.02
	$\mathrm{C}_{5} \mathrm{H}_{5}$	4.86, 5.03	5.00, 5.36	4.96, 5.30
${ }^{13} \mathrm{C}$	CH	53.44	38.91	37.45
	$C \equiv \mathrm{C}$	107.96	102.92	98.27
${ }^{1} \mathrm{H}$		trans-4	trans-1a	trans-6
	CH	2.28	2.15	1.95
	$\mathrm{C}_{5} \mathrm{H}_{5}$	4.94	5.18	5.13
${ }^{13} \mathrm{C}$	$C \mathrm{H}\left({ }^{1} J_{\mathrm{CH}}\right)^{\text {b }}$	53.66 (136)	39.48 (131)	37.99 (132)
	$C \equiv \mathrm{C}$	108.80	103.59	98.80
${ }^{1} \mathrm{H}$		$2{ }^{\text {c }}$	1c	7
	CH_{2}	3.03	2.73	$2.54{ }^{\text {d }}$
	$\mathrm{C}_{5} \mathrm{H}_{5}$	4.68	4.99	$5.15{ }^{\text {d }}$
${ }^{13} \mathrm{C}$	$\mathrm{CH}_{2}\left({ }^{1} J_{\mathrm{CH}}\right)^{\text {b }}$	51.18 (159)	38.64 (154)	$n d^{\text {e }}$
	$C \equiv \mathrm{C}$	106.88	102.45	nd ${ }^{\text {e }}$

[^2]purchased from Kanto Kagaku. Dichlorobis(methylcyclopentadienyl)zirconium was purchased from Acros Organics and used as received. 1,4-Dichlorobut-2-yne was purchased from Tokyo Kasei Kogyo Co., Ltd. and used without further purification. (Z)-1,4-bis(trimethylsilyl)-1,2,3-butatriene (3) was prepared according to the literature methodd [26]. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were recorded on JEOL AL-300 and AL-400 spectrometers. Infrared spectra on TravelIR total reflection infrared spectroscopy equipment (SensIR Technologies).

3.2. Preparation of $\mathbf{2}$

A solution of $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}(249 \mathrm{mg}, 1 \mathrm{mmol})$ and $1,4-$ dichlorobut-2-yne ($184 \mathrm{mg}, 1.5 \mathrm{mmol}$) in THF (5 mL) in the presence of dry Mg powder ($73 \mathrm{mg}, 3 \mathrm{mmol}$) was sonicated at $50{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h} .{ }^{1} \mathrm{H}$ NMR observation of the dark green solution showed the formation of $\mathbf{2}$ in 60% yield. Volatiles were removed in vacuo and the residue was dissolved in hexane and filtered. The filtrate was concentrated and cooled to $-20^{\circ} \mathrm{C}$. Dark brown crystals of 2 were obtained in 9% isolated yield. Spectroscopic data were identical to the literature [23].

3.3. Preparation of $\mathbf{4}$

To a solution of $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}(1.24 \mathrm{~g}, 5 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ was added n-butylmagnesium chloride $(1.0 \mathrm{M}$ THF solution, 10 mmol$)$ and $3(0.98 \mathrm{~g}, 5 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The mixture was warmed to r.t. and stirred for $1 \mathrm{~h} .{ }^{1} \mathrm{H}$ NMR spectroscopy showed the formation of 4 as a mixture of cis- and trans-isomers (cis/trans $=33 / 67$). Total yield was 76% by NMR in this stage. cis- $4,{ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 0.13(\mathrm{~s}, 18 \mathrm{H}), 2.49(\mathrm{~s}, 2 \mathrm{H}), 4.86(\mathrm{~s}, 5 \mathrm{H})$, $5.03(\mathrm{~s}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta-1.30,53.44,101.03$, 103.28, 108.80. trans-4, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.15(\mathrm{~s}, 18 \mathrm{H})$, 2.28 (s, 2H), $4.94(\mathrm{~s}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta-1.08$, 53.66, 102.18, 107.96.

3.4. Preparation of $\mathbf{5}$

To a solution of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2} \mathrm{ZrCl}_{2} \quad(160.2 \mathrm{mg}$, 0.5 mmol) in THF (2.5 mL) was added n-butylmagnesium chloride (2 M in THF, 1.2 mmol) and (Z)-1,4-bis(trimeth-ylsilyl)-1,2,3- butatriene ($\mathbf{3} ; 136 \mathrm{mg}, 0.69 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$ and the mixture was warmed up to r.t. It was stirred at $50^{\circ} \mathrm{C}$ for an additional 1 h . NMR observation showed the formation of 5 as a 50/50 mixture of cis- and trans-isomers; the combined yield was 89%. Then dioxane (0.3 mL) was added and stirred at r.t. for 20 min . The solution was dried and the residue was dissolved in diethyl ether. The solution was filtered and the filtrate was concentrated and cooled to $-78^{\circ} \mathrm{C}$. The title compound was obtained as colorless block crystals in 55% isolated yield.
cis-5, ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.30(\mathrm{~s}, 18 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 2.05$ $(\mathrm{s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 2 \mathrm{H}), 4.85(\mathrm{~m}, 2 \mathrm{H}), 4.96(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~m}$, $2 \mathrm{H}), 5.66(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.60,13.33(\mathrm{Me})$,
$15.74(\mathrm{Me}), 38.95(\mathrm{CH}), 100.61(\mathrm{CH}), 101.49(\mathrm{CH}), 104.60$ (q), $105.34(\mathrm{CH}), 108.17(\mathrm{CH}), 114.33(\mathrm{q}), 115.55(\mathrm{q})$.
trans-5, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.28(\mathrm{~s}, 18 \mathrm{H}), 1.80(\mathrm{~s}, 6 \mathrm{H})$, $2.00(\mathrm{~s}, 2 \mathrm{H}), 4.72(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{~m}, 2 \mathrm{H})$, $5.49(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.62,14.82(\mathrm{Me})$, $40.41(\mathrm{CH}), 101.40(\mathrm{CH}), 102.31(\mathrm{CH}), 105.34(\mathrm{CH})$, 106.54 (q), $107.60(\mathrm{CH}), 115.47$ (q). IR (neat): 936, 1248, $1559,2018,2373,2956 \mathrm{~cm}^{-1}$. m.p. $180-185^{\circ} \mathrm{C}$ (dec.). Elemental analysis did not give satisfactory results. The ${ }^{13} \mathrm{C}$ NMR spectra are shown in the Supplementary materials.

3.5. Preparation of Hf complex 6

$\mathrm{Cp}_{2} \mathrm{HfCl}_{2}(380 \mathrm{mg}, 1 \mathrm{mmol})$ and $3(206 \mathrm{mg}, 1.05 \mathrm{mmol})$ were dissolved in THF (5 mL). To this solution was added dry Mg powder ($29 \mathrm{mg}, 1.2 \mathrm{mmol}$) and $\mathrm{HgCl}_{2}(13 \mathrm{mg}$, 0.05 mmol), and the mixture was sonicated at r.t. for 1 h followed by stirring at r.t. overnight. ${ }^{1} \mathrm{H}$ NMR spectroscopy showed the formation of $\mathbf{6}$ as a mixture of cis/trans isomers (cis/trans $=50 / 50$). Total yield was 73% by ${ }^{1} \mathrm{H}$ NMR in this stage. Recrystallization of $\mathbf{6}$ from hexane solution gave crude product as a white solid (yield 75%). Repeated recrystallization gave the title compound as colorless needle crystals in 13% yield. cis-6, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.28(\mathrm{~s}, 18 \mathrm{H}), 1.95(\mathrm{~s}, 2 \mathrm{H}), 4.96(\mathrm{~s}, 5 \mathrm{H}), 5.30(\mathrm{~s}$,

5H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.72,37.45,98.27,101.71$, 103.21. trans-6, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.28(\mathrm{~s}, 18 \mathrm{H}), 2.02(\mathrm{~s}$, $2 \mathrm{H}), 5.13(\mathrm{~s}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.72,37.99$, 98.80, 102.45. IR (neat): 830, 953, 1017, 1241, 1439, 2016, 2890, $2944 \mathrm{~cm}^{-1}$. m.p. $140^{\circ} \mathrm{C}$ (dec.). Anal. Calc. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{Si}_{2} \mathrm{Hf}: \mathrm{C}, 47.56 ; \mathrm{H}, 5.99$. Found: C, 47.18; H, 6.03%.

3.6. Preparation of 7

To a suspension of dry Mg powder ($97 \mathrm{mg}, 4 \mathrm{mmol}$) and $\mathrm{HgCl}_{2}(27 \mathrm{mg}, 0.1 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ was added $\mathrm{Cp}_{2} \mathrm{HfCl}_{2}(2387.5 \mathrm{mg}, 1 \mathrm{mmol})$ and 1,4-dichlorobut-2-yne $(246 \mathrm{mg}, 2 \mathrm{mmol})$ at r.t. The mixture was sonicated at $50^{\circ} \mathrm{C}$ for 1 h . NMR was measured using a mixture of THF and $\mathrm{C}_{6} \mathrm{D}_{6}$ as a solvent. ${ }^{1} \mathrm{H}$ NMR observation of the brownish mixture suggested the formation of 7 in about 30% yield accompanied by some unidentified products. ${ }^{1} \mathrm{H}$ NMR (THF/C ${ }_{6} \mathrm{D}_{6}$): $\delta 2.54(\mathrm{~s}, 4 \mathrm{H}), 5.15(\mathrm{~s}, 10 \mathrm{H})$.

3.7. X-ray diffraction analysis of 2

Single crystals were obtained by recrystallization from a hexane solution at $-20^{\circ} \mathrm{C}$. A dark brown crystal $(0.5 \times$ $0.5 \times 0.2 \mathrm{~mm}$) was mounted in a nylon loop and coated with liquid paraffin. Data were collected on a Rigaku

Table 3
Crystal data and structure refinement for metallacyclopentyne complexes

Complex	2	5	6
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{Ti}$	$\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{Si}_{2} \mathrm{Zr}$	$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{HfSi}_{2}$
Formula weight	230.16	445.90	505.11
Crystal color, habit	Brown, cubic	Colorless, block	Colorless, needle
Crystal dimensions	$0.50 \times 0.40 \times 0.20 \mathrm{~mm}$	$0.35 \times 0.35 \times 0.15 \mathrm{~mm}$	$0.70 \times 0.10 \times 0.10 \mathrm{~mm}$
Crystal system	Orthorhombic	Monoclinic	Monoclinic
Lattice type	Primitive	Primitive	Primitive
Space group	Pbcn (\#60)	$P 2{ }_{1} / n(\# 14)$	$P 2{ }_{1} / c$ (\#14)
Lattice parameters			
$a(\mathrm{~A})$	10.2557(8)	7.393(1)	13.2420(2)
$b(\AA)$	11.3683(6)	20.946(6)	12.4750(2)
$c(\AA)$	$9.4145(7)$	14.571(2)	14.2090(2)
$\beta\left({ }^{\circ}{ }^{\circ}\right.$		93.289(9)	114.4850(10)
$V\left(\AA^{3}\right)$	1097.6(1)	2252.6(8)	2136.15(6)
Z value	4	4	4
Absorption coefficient (cm^{-1})	7.40	5.97	6.66
Radiation	Mo $\mathrm{K} \alpha(\lambda=0.71073$ A $)$	Mo K $\alpha(\lambda=0.71073$ A $)$	Synchrotron ($\lambda=0.3282 \mathrm{~A}$)
	Graphite monochromated	Graphite monochromated	Bending magnet on SPring-8 BL04B2
Temperature (K)	153	108	296
No. of reflections measured	Total: 12167	Total: 20293	Total: 34031
	Unique: $1252\left(R_{\text {int }}=0.057\right)$	Unique: $5091\left(R_{\text {int }}=0.036\right)$	Unique: $6077\left(R_{\text {int }}=0.0367\right)$
Corrections	Lorentz-polarization absorption (trans. factors: 0.6721-0.8624)	Lorentz-polarization	Semi-empirical from equivalents
No. of reflections	1252	5091	6077
No. variables	97	234	226
Reflection/parameter ratio	12.91	21.76	26.89
Residuals: R; $R w$	0.058; 0.086	0.069; 0.105	0.0398; 0.0934
Residuals: R_{1}	0.033	0.041	0.0344
No. of reflections to calc. R_{1}	881	4019	5415
Goodness of fit indicator	0.86	1.36	1.208
Max shift/error in final cycle	0.003	0.012	0.001
Maximum peak in final diff. map (e \AA^{-3})	0.32	0.88	2.368
Minimum peak in final diff. map (e \AA^{-3})	-0.34	-0.55	-2.215

RAXIS-CS Imaging Plate diffractometer using graphite monochromated Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA)$ at 153 K . The structure was solved by direct methods [38] and expanded using Fourier techniques [39]. Hydrogen atoms were refined isotropically. The refinements were carried out by a least-squares method on F^{2}. All calculations were performed using the TExsAn software package [40]. Crystal data are summarized in Table 3. See the CIF data (CCDC-250108) for details.

3.8. X-ray crystallographic analysis of 5

Single crystals were obtained by recrystallization from a diethyl ether solution. A colorless block crystal $(0.35 \times 0.35$ $\times 0.15 \mathrm{~mm}$) was mounted in a loop. Data were collected on a Rigaku RAXIS-RAPID Imaging Plate diffractometer with graphite monochromated Mo $\mathrm{K} \alpha$ radiation at $-165^{\circ} \mathrm{C}$. The structure was solved by direct methods [38] and expanded using Fourier techniques [39]. The nonhydrogen atoms were refined anisotropically. Hydrogen atoms, H 1 and H 4 , were refined isotropically, and the rest were included in fixed positions. The refinements were carried out by a least-squares refinement on F^{2}. All calculation were performed using the TEXSAN software package [40]. Crystal data are summarized in Table 3. See the CIF data (CCDC-276485) for details.

3.9. X-ray diffraction analysis of 6

A single crystal of 6 was obtained by recrystallization from hexane solution. The single crystal with dimensions of $0.7 \times 0.1 \times 0.1 \mathrm{~mm}$ was sealed in a glass capillary together with Ar gas. Diffraction data were collected on an automated imaging plate Weissenberg camera, MacScience DIP-LABO, on the BL04B2 beam line at SPring8 [41] using 37.8 keV ($0.3282 \AA$ A) radiation with an oscillation method at room temperature. In all, 108 frames were measured with oscillation angle 3° and interval 2.5° with two different crystal orientations. Measured Bragg spots were integrated, and scaled and averaged with the programs denzo and scalepack [42], respectively. Lorentz, polarization and absorption corrections were applied. Measured and independent reflections, and completeness were 34031 , 6077, and 0.981 , respectively. The structure was solved by a direct method and refined with the program SIR97 [38] and SHELXL97 [43], respectively. Crystal data are summarized in Table 3. See the CIF data (CCDC276486) for details.

Acknowledgements

The authors thank Ms. Keiko Yamada for assistance in elemental analyses. Measurement of diffraction data of 6 was carried out at SPring-8 under Project No. 2004B0181-ND1b-np. This work was financially supported by the Ministry of Education, Culture, Sports, Science, and Technology of Japan (Grant-in-Aid for Scientific Research,

C: No. 15550059) and the SORST program of Japan Science and Technology (JST).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jorganchem. 2005.11.052.

References

[1] A. Krebs, J. Wilke, Top. Curr. Chem. 109 (1983) 189.
[2] R. Gleiter, R. Merger, in: P.J. Stang, F. Diederich (Eds.), Modern Acetylene Chemistry, VCH, Weinheim, 1995 (Chapter 8).
[3] H. Meier, Adv. Strain Org. Chem. 1 (1991) 215.
[4] J.M. Bolster, R.M. Kellogg, J. Am. Chem. Soc. 103 (1981) 2868.
[5] G. Wittig, A. Krebs, R. Pohlke, Angew. Chem. 72 (1960) 324.
[6] L.K. Montgomery, J.D. Roberts, J. Am. Chem. Soc. 82 (1960) 4750.
[7] O.L. Chapman, J. Gano, P.R. West, M. Regitz, G. Maas, J. Am. Chem. Soc. 103 (1981) 7033.
[8] L. Fitjer, U. Kliebisch, D. Wehle, S. Modaressi, Tetrahedron Lett. 23 (1982) 1661.
[9] S.L. Buchwald, R.T. Lum, R.A. Fischer, W.M. Davis, J. Am. Chem. Soc. 111 (1989) 9113.
[10] M.A. Bennett, H.P. Schwemlein, Angew. Chem., Int. Ed. Engl. 28 (1989) 1296.
[11] W.M. Jones, J. Klosin, Adv. Organomet. Chem. 42 (1998) 147.
[12] N. Suzuki, M. Nishiura, Y. Wakatsuki, Science 295 (2002) 660.
[13] N. Suzuki, N. Aihara, H. Takahara, T. Watanabe, M. Iwasaki, M. Saburi, D. Hashizume, T. Chihara, J. Am. Chem. Soc. 126 (2004) 60.
[14] N. Suzuki, T. Watanabe, M. Iwasaki, T. Chihara, Organometallics 24 (2005) 2065.
[15] N. Suzuki, N. Aihara, M. Iwasaki, M. Saburi, T. Chihara, Organometallics 24 (2005) 791.
[16] M.A. Bach, V.V. Burlakov, P. Arndt, W. Baumann, A. Spannenberg, U. Rosenthal, Organometallics 24 (2005) 3047.
[17] U. Rosenthal, A. Ohff, W. Baumann, R. Kempe, A. Tillack, V.V. Burlakov, Angew. Chem., Int. Ed. Engl. 33 (1994) 1605.
[18] U. Rosenthal, P.-M. Pellny, F.G. Kirchbauer, V.V. Burlakov, Acc. Chem. Res. 33 (2000) 119.
[19] U. Rosenthal, V.V. Burlakov, in: I. Marek (Ed.), Titanium and Zirconium in Organic Synthesis, Wiley-VCH, Weinheim, 2002, p. 355.
[20] U. Rosenthal, V.V. Burlakov, P. Arndt, W. Baumann, A. Sparmenberg, Organometallics 24 (2005) 456.
[21] V.V. Burlakov, A. Ohff, C. Lefeber, A. Tillack, W. Baumann, R. Kempe, U. Rosenthal, Chem. Ber. 128 (1995) 967.
[22] Recently interesting reactivity of manganacycles has been reported. S. Yamazaki, Z. Taira, T. Yonemura, A.J. Deeming, Organometallics 24 (2005) 20.
[23] V.V. Burlakov, P. Arndt, W. Baumann, A. Spannenberg, U. Rosenthal, P. Parameswaran, E.D. Jemmis, Chem. Commun. (2004) 2074.
[24] N. Suzuki, T. Watanabe, T. Hirose, T. Chihara, Chem. Lett. 33 (2004) 1488.
[25] Y. Wakatsuki, H. Yamazaki, N. Kumegawa, T. Satoh, J.Y. Satoh, J. Am. Chem. Soc. 113 (1991) 9604.
[26] Y. Wakatsuki, H. Yamazaki, N. Kumegawa, P.S. Johar, Bull. Chem. Soc. Jpn. 66 (1993) 987.
[27] E.-i. Negishi, D. Choueiry, T.B. Nguyen, D.R. Swanson, N. Suzuki, T. Takahashi, J. Am. Chem. Soc. 116 (1994) 9751.
[28] U. Thewalt, T. Woehrle, J. Organomet. Chem. 464 (1994) C17.
[29] W.E. Hunter, D.C. Hrncir, R.V. Bynum, R.A. Penttila, J.L. Atwood, Organometallics 2 (1983) 750.
[30] K.C. Lam, Z. Lin, Organometallics 22 (2003) 3466.
[31] E.D. Jemmis, A.K. Phukan, H. Jiao, U. Rosenthal, Organometallics 22 (2003) 4958.
[32] P. Binger, P. Müller, R. Benn, A. Rufi'nska, B. Gabor, C. Krüger, P. Betz, Chem. Ber. 122 (1989) 1035.
[33] T. Takahashi, M. Murakami, M. Kunishige, M. Saburi, Y. Uchida, K. Kozawa, T. Uchida, D.R. Swanson, E. Negishi, Chem. Lett. (1989) 761.
[34] S.L. Buchwald, R.T. Lum, J.C. Dewanpp, J. Am. Chem. Soc. 108 (1986) 7441.
[35] J.F. Payack, D.L. Hughes, D. Cai, I.F. Cottrell, T.R. Verhoeven, Org. Synth. 79 (2002) 19.
[36] C. Mattheis, A.A.H. van der Zeijden, R. Fröhlich, J. Organomet. Chem. 602 (2000) 51.
[37] A.R. Siedle, R.A. Newmark, J.N. Schroepfer, P.A. Lyon, Organometallics 10 (1991) 400.
[38] A. Altomare, M.C. Burla, M. Camalli, G.L. Cascarano, C. Giacovazzo, A. Guagliardi, A.G. Moliterni, G. Polidori, R. Spagna, J. Appl. Cryst. 32 (1999) 115.
[39] P.T. Beurskens, G. Admiraal, G. Beurskens, W.P. Bosman, R. de Gelder, R. Israel, J.M.M. Smits, The dirdif-94 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands, 1994.
[40] texsan, Crystal Structure Analysis Package, Molecular Structure Corporation (1985 and 1999).
[41] T. Ozeki, K. Kusaka, N. Honma, Y. Nakamura, S. Nakamura, S. Oike, N. Yasuda, H. Imura, H. Uekusa, M. Isshiki, C. Katayama, Y. Ohashi, Chem. Lett. (2001) 804.
[42] Z. Otwinowski, W. Minor, Methods in Enzymol. 276 (1997) 307.
[43] G.M. Sheldrick, Shelxl97, University of Göttingen, Germany, 1997.

[^0]: is This paper is dedicated to Prof. Ei-ichi Negishi (Herbert C. Brown Distinguished Professor at Purdue University) on the occasion of his 70th birthday.
 ${ }^{*}$ Corresponding author.
 E-mail address: nsuzuki@riken.jp (N. Suzuki).

[^1]: ${ }^{\text {a }} \mathrm{C} 2-\mathrm{C} 2$ *.
 ${ }^{\mathrm{b}} \mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 2 *$.
 ${ }^{c} \mathrm{C} 1-\mathrm{Ti}-\mathrm{C} 1$ *.
 ${ }^{d}$ The angle between the metallacyclopentyne plane and the $C p(c)-M-C p(c)$ plane; $C p(c)$: centroid of the C p rings.
 ${ }^{\mathrm{e}}$ The summation of the three bond angles (excluding the $\mathrm{C}-\mathrm{Zr}$ bond) at C 1 and C 4 .

[^2]: ${ }^{\mathrm{a}}$ In $\mathrm{C}_{6} \mathrm{D}_{6}$.
 ${ }^{\mathrm{b}} \mathrm{Hz}$.
 ${ }^{\text {c }}$ Ref. [23].
 ${ }^{d}$ In THF/C6 D_{6}.
 ${ }^{\mathrm{e}}$ Not detected.

